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PROBLEM DESCRIPTION

The Community Land Model (CLM) of the Community Earth System Models
contains a module to estimate CH4 emissions from natural wetlands and rice
paddies. However, there are large discrepancies between the CLM predictions
and the observations. Our goal is to use surrogate optimization in order to tune
the model parameters such that the model predictions and the observations are
in better agreement.

The difficulty of solving the optimization problem lies in the objective function
which has the following properties:

1. computationally expensive
2. black-box
3. multi-modal/possibly not identifiable

Goal: Find a near optimal solution (set of tuning parameters) within very few
expensive objective function evaluations such that observations and model
predictions match better.

Surrogate Optimization has been shown to be very efficient for computationally
expensive model calibration since it obtains accurate answers with generally
fewer model evaluations than competing methods. To our knowledge this is
the first application of a surrogate optimization method to calibrate a global
climate model.

MATHEMATICAL PROBLEM FORMULATION

Our goal is to minimize the sum of weighted root mean squared errors (RMSE):

min f(x) =
∑M
i=1 wiri (1)

such that −∞ < xlk ≤ xk ≤ xuk <∞, k = 1, . . . , d (2)

where

1. M is the number of locations where we have observations
2. ri =

√
1
Ni

∑Ni

j=1[Oi,j − Si,j(x)]2, i = 1, . . . ,M is the RMSE at location i
3. Ni is the number of observations at location i
4. Oi,j is the jth observation at the ith location
5. Si,j(x) is the jth model prediction at the ith location given the parameter

vector x
6. wi is a weight that is computed based on the total CH4 emissions at loca-

tion i

SIMULATION MODEL DESCRIPTION

• We used CLM4.5bgc (latest CLM version with improved biogeochem-
istry).

• We used a mechanistic CH4 emission model [1,6].
• CLM4.5bgc simulates the physical and biogeochemical processes regulat-

ing terrestrial CH4 fluxes (CH4 production, oxidation, CH4 and O2 trans-
port through aerenchyma of wetland plants, ebullition, and CH4 and O2

diffusion through soil).
• CLM4.5bgc includes constraints on CH4 emissions such as the effects of

redox potential and soil pH.
• CLM4.5bgc can simulate satellite derived inundation fraction.

SURROGATE OPTIMIZATION

In surrogate optimization, we use a computationally cheap approximation s(x) of the expensive objective function f(x) in order to predict function values at
unsampled points:

f(x) = s(x) + e(x).

A general surrogate algorithm works as follows (see also [2, 3, 5]):

Step 1: Create an initial experimental design and evaluate f(x) at the selected points. Fit the surrogate s(x) to the data.
Step 2: Use s(x) to select a new evaluation point xnew and compute f(xnew).
Step 3: If the stopping criterion is not satisfied, update s(x) with the new data and go to Step 2. Otherwise, stop.
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Step 1 Step 2 Step 3 Step 2 Step 3
We use a cubic radial basis function interpolant as surrogate

s(x) =
n∑
l=1

λlφ(‖x− xl‖) + p(x)

where n is the number of already evaluated points, xl is the lth already evaluated point, φ(r) = r3 is the cubic radial basis function, ‖ · ‖ is the Euclidean norm, and
p(x) = b0 + bTx is a polynomial tail. The parameters λl, b0, and b are determined by solving a linear system of equations:

[
Φ P
PT 0

] [
λ
c

]
=

[
F
0

]
, where P =


xT1 1
xT2 1
...

...
xTn 1

 , λ =


λ1
λ2
...
λn

 , c =


b1
b2
...
bd
b0

 , F =


f(x1)
f(x2)

...
f(xn)

 , and Φιν = φ(‖xι − xν‖), ι, ν = 1, . . . , n. (3)

The matrix in equation (3) is invertible if and only if rank(P ) = d+ 1 [4].

MODEL PARAMETERS AND OBSERVATION SITES

• CLM4.5bgc has 21 CH4-related parameters .
• We used parameter bounds (xlk and xuk) based on literature values.
• We used sensitivity analyses to determine the most important parameters.
• We found 11 parameters that were important for almost all observation

sites.
• We used observations from 6 natural wetland and 10 rice paddy sites

around the globe.
• The number of observations at each site ranged from 10 to 79 collected

over 1 to 3 years.

NUMERICAL EXPERIMENTS WITH PSEUDO DATA

Pseudo data case to verify that the algorithm works:

• We created pseudo data by running CLM4.5bgc with default parameters
for all observation sites.
• We recorded the model’s CH4 output for the same dates at which we have

observations (=pseudo observations).
• We perturbed the parameters and tried to find the default parameters by

surrogate optimization.
• The globally optimal objective function value in the pseudo data case is 0.

Results:

• We did three trials. The final objective function values were close to 0.
• Initial objective function values were larger than 50, within less than 100

evaluations we could decrease that value to less than 10 in all trials.
• We found that the problem has several local optima with very similar ob-

jective function values. Hence, the problem is probably not identifiable.

NUMERICAL EXPERIMENTS WITH REAL DATA (1)
Real data case to improve the model’s parameters:

• We include the default parameter values in the initial experimental design.
• We use the real observations to compute the objective function values cor-

responding to the parameter vectors for which we run CLM4.5bgc.
• The globally optimal objective function value in the real data case should

be lower than the objective function value for the default parameters.

Results:
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Default RMSE: 164.46

T1 min RMSE: 107.24

T2 min RMSE: 107.58

T3 min RMSE: 107.41
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Fig. 1: Scatter plot of CH4 observation means versus simulated means with
default and optimized parameters for all observation sites. Northern: 1, 16;

(sub)tropical: 5, 8, 12, 14, 15; temperate: 2, 3, 4, 6, 7, 9, 10, 11, 13. The closer the
markers are to the dashed line, the better observations and simulations agree.

NUMERICAL EXPERIMENTS WITH REAL DATA (2)

Fig. 2: Difference between predicted CH4 emissions (mg CH4/m2/d) with opti-
mized parameters and default parameters. With the optimized parameters, the
CH4 emission predictions in the northern regions are larger than for the default
parameters. For the tropics, the predictions with the optimized parameters are
lower than when using the default values.

NUMERICAL EXPERIMENTS WITH REAL DATA (3)
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Observations

CLM default: 221.52

Optimized T1: 54.61

Optimized T2: 48.31

Optimized T3: 43.40

Fig. 3: Observation data, predictions with default and optimized parameters,
and corresponding RMSE’s for Central Java, Indonesia, observation site.

CONCLUSIONS

• We tuned the CH4 related parameters in CLM4.5bgc using surrogate op-
timization to achieve a better fit of observations and model predictions.
• We assessed the effectiveness of the surrogate algorithm by using pseudo

data.
• For the real data, the algorithm reduced the objective function value sig-

nificantly as compared to the default value.
• We found that the objective function landscape is multimodal, hence the

problem is probably not identifiable.
• The total global CH4 emissions using the optimized parameters does not

change significantly, but the distribution of CH4 emissions between lati-
tudes changed.
• The observation data drives the model to predict more emissions in the

northern latitudes and less in the tropics.
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